Copied to
clipboard

G = C24.5Q8order 128 = 27

4th non-split extension by C24 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.5Q8, C24.51D4, C25.4C22, C24.629C23, C233(C4⋊C4), C24.42(C2×C4), C22.122(C4×D4), C23.719(C2×D4), (C22×C4).121D4, (C23×C4).7C22, C23.129(C2×Q8), C22.66C22≀C2, C2.2(C232D4), C2.1(C23⋊Q8), C23.342(C4○D4), C22.98(C4⋊D4), C22.24(C41D4), C23.298(C22×C4), C22.60(C22⋊Q8), C2.1(C23.Q8), C2.1(C23.4Q8), C2.5(C23.7Q8), C2.4(C23.8Q8), C2.6(C23.23D4), C2.1(C23.11D4), C2.2(C23.10D4), C22.48(C4.4D4), C22.23(C422C2), C22.72(C42⋊C2), C2.5(C24.C22), C2.5(C24.3C22), C22.71(C22.D4), (C22×C4⋊C4)⋊1C2, (C2×C22⋊C4)⋊17C4, (C2×C4)⋊5(C22⋊C4), C22.76(C2×C4⋊C4), (C22×C4).168(C2×C4), (C2×C2.C42)⋊3C2, (C22×C22⋊C4).3C2, C22.139(C2×C22⋊C4), SmallGroup(128,171)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.5Q8
C1C2C22C23C24C25C22×C22⋊C4 — C24.5Q8
C1C23 — C24.5Q8
C1C24 — C24.5Q8
C1C24 — C24.5Q8

Generators and relations for C24.5Q8
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=be2, ab=ba, faf-1=ac=ca, eae-1=ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 812 in 390 conjugacy classes, 116 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23×C4, C25, C2×C2.C42, C2×C2.C42, C22×C22⋊C4, C22×C22⋊C4, C22×C4⋊C4, C24.5Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C41D4, C23.7Q8, C23.8Q8, C23.23D4, C24.C22, C24.3C22, C232D4, C23⋊Q8, C23.10D4, C23.Q8, C23.11D4, C23.4Q8, C24.5Q8

Smallest permutation representation of C24.5Q8
On 64 points
Generators in S64
(1 43)(2 52)(3 41)(4 50)(5 34)(6 29)(7 36)(8 31)(9 54)(10 59)(11 56)(12 57)(13 49)(14 42)(15 51)(16 44)(17 58)(18 55)(19 60)(20 53)(21 35)(22 30)(23 33)(24 32)(25 40)(26 45)(27 38)(28 47)(37 63)(39 61)(46 64)(48 62)
(1 41)(2 42)(3 43)(4 44)(5 30)(6 31)(7 32)(8 29)(9 46)(10 47)(11 48)(12 45)(13 51)(14 52)(15 49)(16 50)(17 38)(18 39)(19 40)(20 37)(21 33)(22 34)(23 35)(24 36)(25 60)(26 57)(27 58)(28 59)(53 63)(54 64)(55 61)(56 62)
(1 6)(2 7)(3 8)(4 5)(9 25)(10 26)(11 27)(12 28)(13 23)(14 24)(15 21)(16 22)(17 62)(18 63)(19 64)(20 61)(29 43)(30 44)(31 41)(32 42)(33 49)(34 50)(35 51)(36 52)(37 55)(38 56)(39 53)(40 54)(45 59)(46 60)(47 57)(48 58)
(1 15)(2 16)(3 13)(4 14)(5 24)(6 21)(7 22)(8 23)(9 17)(10 18)(11 19)(12 20)(25 62)(26 63)(27 64)(28 61)(29 35)(30 36)(31 33)(32 34)(37 45)(38 46)(39 47)(40 48)(41 49)(42 50)(43 51)(44 52)(53 57)(54 58)(55 59)(56 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 43 37)(2 17 44 40)(3 20 41 39)(4 19 42 38)(5 64 32 56)(6 63 29 55)(7 62 30 54)(8 61 31 53)(9 52 48 16)(10 51 45 15)(11 50 46 14)(12 49 47 13)(21 26 35 59)(22 25 36 58)(23 28 33 57)(24 27 34 60)

G:=sub<Sym(64)| (1,43)(2,52)(3,41)(4,50)(5,34)(6,29)(7,36)(8,31)(9,54)(10,59)(11,56)(12,57)(13,49)(14,42)(15,51)(16,44)(17,58)(18,55)(19,60)(20,53)(21,35)(22,30)(23,33)(24,32)(25,40)(26,45)(27,38)(28,47)(37,63)(39,61)(46,64)(48,62), (1,41)(2,42)(3,43)(4,44)(5,30)(6,31)(7,32)(8,29)(9,46)(10,47)(11,48)(12,45)(13,51)(14,52)(15,49)(16,50)(17,38)(18,39)(19,40)(20,37)(21,33)(22,34)(23,35)(24,36)(25,60)(26,57)(27,58)(28,59)(53,63)(54,64)(55,61)(56,62), (1,6)(2,7)(3,8)(4,5)(9,25)(10,26)(11,27)(12,28)(13,23)(14,24)(15,21)(16,22)(17,62)(18,63)(19,64)(20,61)(29,43)(30,44)(31,41)(32,42)(33,49)(34,50)(35,51)(36,52)(37,55)(38,56)(39,53)(40,54)(45,59)(46,60)(47,57)(48,58), (1,15)(2,16)(3,13)(4,14)(5,24)(6,21)(7,22)(8,23)(9,17)(10,18)(11,19)(12,20)(25,62)(26,63)(27,64)(28,61)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,43,37)(2,17,44,40)(3,20,41,39)(4,19,42,38)(5,64,32,56)(6,63,29,55)(7,62,30,54)(8,61,31,53)(9,52,48,16)(10,51,45,15)(11,50,46,14)(12,49,47,13)(21,26,35,59)(22,25,36,58)(23,28,33,57)(24,27,34,60)>;

G:=Group( (1,43)(2,52)(3,41)(4,50)(5,34)(6,29)(7,36)(8,31)(9,54)(10,59)(11,56)(12,57)(13,49)(14,42)(15,51)(16,44)(17,58)(18,55)(19,60)(20,53)(21,35)(22,30)(23,33)(24,32)(25,40)(26,45)(27,38)(28,47)(37,63)(39,61)(46,64)(48,62), (1,41)(2,42)(3,43)(4,44)(5,30)(6,31)(7,32)(8,29)(9,46)(10,47)(11,48)(12,45)(13,51)(14,52)(15,49)(16,50)(17,38)(18,39)(19,40)(20,37)(21,33)(22,34)(23,35)(24,36)(25,60)(26,57)(27,58)(28,59)(53,63)(54,64)(55,61)(56,62), (1,6)(2,7)(3,8)(4,5)(9,25)(10,26)(11,27)(12,28)(13,23)(14,24)(15,21)(16,22)(17,62)(18,63)(19,64)(20,61)(29,43)(30,44)(31,41)(32,42)(33,49)(34,50)(35,51)(36,52)(37,55)(38,56)(39,53)(40,54)(45,59)(46,60)(47,57)(48,58), (1,15)(2,16)(3,13)(4,14)(5,24)(6,21)(7,22)(8,23)(9,17)(10,18)(11,19)(12,20)(25,62)(26,63)(27,64)(28,61)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,43,37)(2,17,44,40)(3,20,41,39)(4,19,42,38)(5,64,32,56)(6,63,29,55)(7,62,30,54)(8,61,31,53)(9,52,48,16)(10,51,45,15)(11,50,46,14)(12,49,47,13)(21,26,35,59)(22,25,36,58)(23,28,33,57)(24,27,34,60) );

G=PermutationGroup([[(1,43),(2,52),(3,41),(4,50),(5,34),(6,29),(7,36),(8,31),(9,54),(10,59),(11,56),(12,57),(13,49),(14,42),(15,51),(16,44),(17,58),(18,55),(19,60),(20,53),(21,35),(22,30),(23,33),(24,32),(25,40),(26,45),(27,38),(28,47),(37,63),(39,61),(46,64),(48,62)], [(1,41),(2,42),(3,43),(4,44),(5,30),(6,31),(7,32),(8,29),(9,46),(10,47),(11,48),(12,45),(13,51),(14,52),(15,49),(16,50),(17,38),(18,39),(19,40),(20,37),(21,33),(22,34),(23,35),(24,36),(25,60),(26,57),(27,58),(28,59),(53,63),(54,64),(55,61),(56,62)], [(1,6),(2,7),(3,8),(4,5),(9,25),(10,26),(11,27),(12,28),(13,23),(14,24),(15,21),(16,22),(17,62),(18,63),(19,64),(20,61),(29,43),(30,44),(31,41),(32,42),(33,49),(34,50),(35,51),(36,52),(37,55),(38,56),(39,53),(40,54),(45,59),(46,60),(47,57),(48,58)], [(1,15),(2,16),(3,13),(4,14),(5,24),(6,21),(7,22),(8,23),(9,17),(10,18),(11,19),(12,20),(25,62),(26,63),(27,64),(28,61),(29,35),(30,36),(31,33),(32,34),(37,45),(38,46),(39,47),(40,48),(41,49),(42,50),(43,51),(44,52),(53,57),(54,58),(55,59),(56,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,43,37),(2,17,44,40),(3,20,41,39),(4,19,42,38),(5,64,32,56),(6,63,29,55),(7,62,30,54),(8,61,31,53),(9,52,48,16),(10,51,45,15),(11,50,46,14),(12,49,47,13),(21,26,35,59),(22,25,36,58),(23,28,33,57),(24,27,34,60)]])

44 conjugacy classes

class 1 2A···2O2P2Q2R2S4A···4X
order12···222224···4
size11···144444···4

44 irreducible representations

dim111112222
type++++++-
imageC1C2C2C2C4D4D4Q8C4○D4
kernelC24.5Q8C2×C2.C42C22×C22⋊C4C22×C4⋊C4C2×C22⋊C4C22×C4C24C24C23
# reps13318122212

Matrix representation of C24.5Q8 in GL7(𝔽5)

1000000
0420000
0010000
0004000
0000100
0000040
0000001
,
4000000
0400000
0040000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000100
0000040
0000004
,
1000000
0400000
0040000
0004000
0000400
0000040
0000004
,
4000000
0340000
0320000
0000100
0004000
0000001
0000040
,
3000000
0200000
0020000
0002000
0000300
0000003
0000030

G:=sub<GL(7,GF(5))| [1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,3,3,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0],[3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,3,0] >;

C24.5Q8 in GAP, Magma, Sage, TeX

C_2^4._5Q_8
% in TeX

G:=Group("C2^4.5Q8");
// GroupNames label

G:=SmallGroup(128,171);
// by ID

G=gap.SmallGroup(128,171);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,2,448,141,64,422,387]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=b*e^2,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽